市面上的空间吸声体,多为几何造型、材料单一的聚氨酯吸声板,通过造型工艺加工成内部中空的方形、菱形、圆柱形、圆锥形。这类的空间吸声体,多在工厂、车间、机房中应用,若放到装饰要求较高的公共建筑中,就会缺乏艺术美感。
对这类空间吸声体进行设计时,设计师可以采用积木拼接法、折纸法,制成动物、花卉、草木等造型,灵活利用色彩构成和空间构成的知识,创造空间层叠的艺术效果。人们对空间的整体感受,大多来自视觉效果。空间吸声体需要在整个 空间环境中,扮演“点睛之笔”,并综合考虑空间的整体装饰效果
将空间吸声体作为一个单独的空间构件进行设计时,设计师要考虑到它的普遍适用性。以商场空间为例,当出现调整专卖店的门面、过厅、休息区域的位置的需求时,设计师可以将空间吸声体拆卸下来,在新的人行通道上方重复使用,这样就可以节省装修成本。就餐区的顶棚,则可以选择穿孔金属板加吸声棉的处理方法,大玻璃墙对应的墙面,如果要做吸声扩散处理,则可以放置分散的空间吸声体
现在的空间,多是追求装饰美和功能美的统一,空间吸声体具有摆放灵活、外观可塑性高、吸声效果可测量的优点,在已经建成的厅堂建筑中,可以起到弥补音质缺陷的作用。空间吸声体的艺术性创造,应是有科学根据的。比如,悬挂的高度、材料的褶皱程度、摆放的位置、色彩的搭配,等等,都需要经过科学的测算来定。由于空间吸声体比普通声学材料有更多的吸声面积,所以在进行设计的时候,可以充分利用视觉假象,来创造多层构造的吸声体。在设计空间吸声体时,设计师要尽可能地创造多于视觉感受的吸声面积,这样才既不浪费空间高度,也不会占用建筑表面积,可以将其视作“空中的建筑小品”或“可拆卸软装类声学构件”。
空间吸声体可以与绿色植
瑞典绿植家具公司空中花园吊灯
瑞典绿植家具公司空中花园吊灯
物相结合,并可以使用透明玻璃器皿,将植物做成微型景观。如将空间吸声体做成假山、喷泉、高山与河流等,放置在玻璃器皿中,底部穿孔吸收噪声。绿色植物本身具有多孔性,再利用玻璃器皿光滑的内壁,对噪声进行抵消,可以达到理想的消声效果。器皿的大小,与空间成正比例,大型空间做成空中花园,小型空间中可以做成体积如一盆吊兰一样的微景观。
我国*的声学家马大猷先生发明了微穿孔吸声结构理论。微穿孔板也是一种吸声性能较好的吸声结构,并且它还具有防尘、防潮、易拆卸清洗的特点。
影响吸声性能因素
穿孔板的穿孔率
微穿孔板后面有空腔,每个小孔背后对应有空腔,此时,整个穿孔板结构相当于许多并联的亥姆霍兹共振器,因此,其吸声性能的好坏是由单位面积上的总的声阻决定的,对于确定孔径的穿孔板,孔距的变化直接影响其吸声特性,孔距小,孔多,声阻增大,其吸声特性曲线向高频移动。低频段,穿孔率小的吸声性能好;高频段,穿孔率大的吸声性能好
空间吸声体由高密度玻璃棉以吸声布或者皮革作为吸声饰面;空间希声体具有吸声效果好、高端大气等特点。空间吸声体具有用料少、重量轻、投资省、吸声效率高、布置灵活、施工方便的特点。
基材:高密度玻璃纤维棉
厚度:50mm/80mm/100mm等
饰面:布艺、皮革、玻纤布等
边框:树脂固化边框、铝制边框等
安装:挂钩安装、锁孔悬挂安装
应用场所:体育馆、音乐厅等大型空间场所等应用尤其广泛。
空间吸声体的吸声原理:
空间吸声体与室内表面上的吸声材料相比,在同样投影面积下,空间吸声体具有较高的吸声效率。这是由于空间吸声体具有更大的有效吸声面积(包括空间吸声体的上**面、下底面和侧面);另外,由于声波在吸声体的上**面和建筑物**面之间多次反射,从而被多次吸收,使吸声量增加,提高了吸声效率。通常以中、高频段吸声效率的提高较为显著。
空间吸声体的吸声性能常用不同频率的单个吸声体的有效吸声量来表示。空间吸声体吸声降噪(或降低混响时间)的效果主要取决于空间吸声体的数量、悬挂间距以及材料和结构,还与建筑空间内的声场条件有关。如原室内表面吸声量很少,反射声较多,混响时间很长,则悬挂空间吸声体后的降噪效果常为5~8分贝,较高时可达10~12分贝;如原室内表面吸声量较大,混响过程不明显,则不必悬挂空间吸声体。
一种分散悬挂于建筑空间上部,用以降低室内噪声或改善室内音质的吸声构件。空间吸声体具有用料少、重量轻、投资省、吸声效率高、布置灵活、施工方便的特点。
许多国家从20世纪50年代起已开始使用空间吸声体,70年代应用逐渐广泛。中国从70年代起开始应用。80年代应用日趋增多。空间吸声体根据建筑物的使用性质、面积、层高、结构形式、装饰要求和声源特性,可有板状、方块状、柱体状、圆锥状和球体状等多种形状。其中板状的结构较简单,应用较普遍。 [1]
空间吸声体多用于室内体育馆,其各式各样的形状、摆设方式,能增强室内的装饰效果,较重要的是它的吸音性能,能防止大型厅堂内产生回声缺陷,并有效降低混响时间。
空间吸声体与室内表面上的吸声材料相比,在同样投影面积下,空间吸声体具有较高的吸声效率。这是由于空间吸声体具有更大的有效吸声面积(包括空间吸声体的上**面、下底面和侧面);另外,由于声波在吸声体的上**面和建筑物**面之间多次反射,从而被多次吸收,使吸声量增加,提高了吸声效率。通常以中、高频段吸声效率的提高较为显著。 [1]